81 research outputs found

    Des modèles biologiques à l'amélioration des plantes

    Get PDF

    Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis

    Get PDF
    The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection

    Phosphoproteome profiles of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea during exponential growth in axenic cultures

    Get PDF
    This study describes the gel-free phosphoproteomic analysis of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea grown in vitro under nonlimiting conditions. Using a combination of strong cation exchange and IMAC prior to LC-MS, we identified over 1350 phosphopeptides per fungus representing over 800 phosphoproteins. The preferred phosphorylation sites were found on serine (>80%) and threonine (>15%), whereas phosphorylated tyrosine residues were found at less than 1% in A. brassicicola and at a slightly higher ratio in B. cinerea (1.5%). Biological processes represented principally among the phoshoproteins were those involved in response and transduction of stimuli as well as in regulation of cellular and metabolic processes. Most known elements of signal transduction were found in the datasets of both fungi. This study also revealed unexpected phosphorylation sites in histidine kinases, a category overrepresented in filamentous ascomycetes compared to yeast.The data have been deposited to the ProteomeXchange database with identifie

    The Arabidopsis ABA-Activated Kinase OST1 Phosphorylates the bZIP Transcription Factor ABF3 and Creates a 14-3-3 Binding Site Involved in Its Turnover

    Get PDF
    indicates that members of the Snf1-Related Kinases 2 family (SnRK2) are essential in mediating various stress-adaptive responses. Recent reports have indeed shown that one particular member, OPEN STOMATA (OST)1, whose kinase activity is stimulated by the stress hormone abscisic acid (ABA), is a direct target of negative regulation by the core ABA co-receptor complex composed of PYR/PYL/RCAR and clade A Protein Phosphatase 2C (PP2C) proteins. and that phospho-T451 is important for stabilization of ABF3. on T451 to create a 14-3-3 binding motif. In a wider physiological context, we propose that the long term responses to ABA that require sustained gene expression is, in part, mediated by the stabilization of ABFs driven by ABA-activated SnRK2s

    Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections

    Get PDF
    Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that the observed diversity resembled results obtained in experimental evolution studies. Whatever the mechanisms leading to diversity, our results have strong medical implications in terms of the need for more extensive isolate testing before deciding on antibiotic therapies
    • …
    corecore